AVERAGES OF BEST WAVELET BASIS ESTIMATES FOR
DENOISING
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ABSTRACT. Donoho and Johnstone introduced an adaptive algorithm that ex-
tends nonlinear thresholding denoising in a fixed orthonormal basis to a mul-
tiple basis setting. In their work a search for an optimal basis from a large
collection of orthonormal bases—i.e., a library—is introduced. That technique
gives the so-called best ortho-basis estimate. In this paper we study the situ-
ation when many such libraries are available. We propose an algorithm that
exploits the availability of many best ortho-basis approximations. The algo-
rithm uses a strengthening of the convexity of the L? norm to produce an
estimate which is an average of best ortho-basis estimates. Conditions under
which the proposed algorithm offers improvements and corresponding numer-
ical examples are also described.

1. INTRODUCTION

Suppose we have noisy data

(1) yj:fj—i-afj j:].,...,N,

where f = (f;) is a given signal and & = (§;) are samples from i.i.d.random variables
with N(0,1) distributions. Thresholding schemes on a fized orthonormal basis [6],
[7] are well known estimators for the underlying signal. It is also known [6], [7]
that the quality of such denoising is related to how well the signal is compressed
in the given orthonormal basis. It is natural to wonder, therefore, how to find the
“best” orthonormal basis with which to denoise a given signal. In this case we say
that the basis is adapted to the signal. Adaptive approximations necessarily offer
a better compression of a signal than expansions in terms of fixed orthonormal
basis. However, in the presence of noise, estimations by thresholding may not be
improved by an adaptive expansion because the flexibility of the search may result
in a basis that correlates well with the noise. Reference [5], building on results
from [2], proposes an algorithm for adaptive denoising, namely an orthonormal
basis which satisfies certain optimality conditions for denoising is chosen from a
library of such bases. This scheme will be called Best Ortho-Basis denoising and
its estimate best wavelet basis estimate. Implicit in this scheme is the possibility of
using many such libraries. If this is actually the case, a further use of adaptivity is
to actually combine, in a meaningful way, some of the available estimates. In this
paper we propose a new algorithm based on selectively averaging best wavelet bases
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estimates obtained from the best ortho-basis algorithm applied to each library from
a given collection of libraries.

We now describe the motivations behind our approach. Donoho and Johnstone
(D&J) select a basis Bz out of a library £ by minimizing a certain entropy function-
al. In the case where many such libraries £; and associated bases B r; are available
a natural question arises: which of these bases gives rise to the best estimate? One
possible approach is to combine these bases into a new library and apply Dé&J
minimum entropy approach to this new collection. A better approach, which is the
one taken in this paper, is to select a subset of the collection 7 C {£; € L}. It
turns out that the elements from 7T offer the same advantages for denoising from
the perspective of the D&J theory. We exploit this fact by taking an average of the
estimates associated to 7. The fact that our average estimate can offer a better
estimate than the ones associated to single elements of 7 is indicated by Proposi-
tion 1, which relies on the uniform convexity of the sphere in L? and D&J oracle
inequalities.

The paper is organized as follows: Section 2 reviews the main results related to
Best Ortho-Basis denoising; key notation is introduced along with critical remarks
regarding a software implementation of this technique. Section 3 is the core of the
paper; Proposition 1 is proved and then the shell repelling algorithm, based on this
proposition, is described. Section 4 gives numerical examples, with discussions, re-
lated to the performance of the algorithms under a variety of conditions. Section 5
summarizes the main points and indicates possibilities for further research. Ap-
pendix A explores numerically the satisfability of the hypothesis needed to apply
Proposition 1 for libraries of wavelet packets. Moreover, in this appendix we list
the signals used in the numerical experiments.

2. BEST ORTHONORMAL BASIS FOR DENOISING

Here we summarize the main result from [5] as presented in [4]. Results for
a single basis and for libraries will be presented simultaneously and contrasted.
Suppose we have available a library £ of orthogonal bases, such as the Wavelet
Packet bases [2] or the Cosine Packet bases of Coifman and Meyer [1]. Let B € £
and 0(z, B) denote the vector of coefficients of a vector z in the basis B. Consider
the family &5 of estimators defined by hard thresholding empirical coefficients in
some basis B € £. Such estimators f(y; z, B) in the coefficient domain are of the
form

where each weight z; is either 0 or 1. Formally, the set of estimators associated
to B are & = {f(.,z,B) : z € {0,1}"}, and the ones associated to £ are b, =
Uger dp = {f(.,z,B) 12 € {0,1}¥,B € £}. Given an estimator f of f, the quality
of estimation is mesured in terms of its risk,

(3) R (f(B).f) =E (Ifw.=B) - fI?).
Define the ideal risk for the case of a library by
(4) Re(f) = inf R (f(zB),f).

fe@L
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In the single basis setting the ideal risk is given by

(5) Ry(f) = inf R (f(z8).f).

fedp

Notice that in order to attain these ideal risks, knowledge of the vector f is re-
quired. Estimates attaining these ideal risks are, therefore, not empirical estimates
but oracle ones [5]. Associated to the ideal risk in (4) is the ideal basis By € £
defined by

(6) Be=arg inf R(f(B),f) =arg_inf Ra(f)

fede PpCP,

In order to introduce empirical estimates, define, for A > 0 given, the vector
6 =6(y,B,A) = (di(y, B, ) by

(7) 6i(y, B, A) = 1y190 8)|>0.v3}-

Set A = Az = 2 In(N). The empirical estimate f(y;8(B, Ag)) relative to B is given
by:

(8) 6:(f,B8) = 6:(y, B, A5)-8i(y, B).

The following oracle inequality holds for all f and N > 4 [6].

Theorem 1. If fz = fz(y; (B, \5))

9) R(fs,f) < 2In(N). (0 + Rs(f)) -

Equation (9) applied to B = B, suggests that this ideal basis will deliver a better
estimate than in any other basis B € £. The main point of [5] is to give an algorithm
to select a basis B € L such that behaves similarly to B, with respect to oracle
inequalities. In order to describe these results, set M, equal to the number of
distinct vectors occuring among all bases in £ and tz = \/21n(M). Choose £ > 8

and set the threshold parameter to be A = Az = (£.(1 + t£))2. Define now the
entropy functional

N
(10) Exe (y,B) = Zmin (0?(y,8),02 )\L) )

Let B, be the best (empirical) orthogonal basis relative to this entropy:
11 3 = i :
(11) B = argmin &, (y, B)

The risk of the empirical estimate satisfies the following oracle inequality for all f

[4].

Theorem 2. If fBL = fgﬁ (y;(;([;’g,/\g)) then

(12) Rifg, ) < A©) Az (0% +Re(f))
where A(€) = 6.(1 —8/¢)~".

Remark 1. In [5] a similar result is proved that holds with high probability, this is
in contrast to the above result that holds in the mean.
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2.1. Practical Considerations. The parameters involved in Theorem 2 are not
substantially larger than those appearing in Theorem 1. In practical situations
though, the discrepancy in the values of A may cause the best ortho-basis estimate to
be poorer than single basis estimates. The following remarks are intended to remedy
this problem. The threshold parameter A, plays a double role in the constructions
described above. First, it is used to select B and then it is used to threshold 0;(y, l?)
In this second application, A, is too large for the method to be competitive with
thresholding in a single basis. In [5] it is mentioned that the parameter £ > 8 could
be made smaller. We have found that a good performance for the best wavelet basis
denoising algorithm is obtained if one uses A = A* = % = 21In(M,) consistently in
all computations. This choice has the appealing property that in the special case
when the library consists of a single basis the parameter A* coincides with the Ag
used in Theorem 1.

3. AVERAGES OF BEST ORTHONORMAL BASES FOR DENOISING

This section proposes an algorithm to compute a new estimate given as an av-
erage of previously found best empirical estimates. We will base our algorithm in
Section 3.1 on Proposition 1. In some of the statements below we assume that the
data y = (y;) in (1) is given and we will supress the dependency of €y, (y,B) on
the data. We assume that a finite collection of libraries L = {£;} is given; for
simplicity, we will assume M, = M. if £,£' € L and set My = M. All libraries
used in Section 3 belong to L. We extend slightly the notation from Section 2,
namely, £ > 8 is fixed and set t;, =t = /2 In My, and A\, = A\ = (£(1 +11))2.

Given, for each £; € L, the best ortho-basis estimate fz = fgci’ we should like

to reconstruct f as an average f = % le fi and maintain control over R ( f, f) =

E (||%D P (fi— f)||2) in terms of the R (fl, f) This is the purpose of Lemma 1.
Lemma 1. Let z;,i = 1,...,p be a collection of vectors in a real inner product

space with squared norm ||z||* = (z,z). Assumer <||lz;|| <R, i=1,...,p. Set
€ =5 2imr 2y lTi — @5 then

(13) =@/ < |o Yomll < (B = &),

Proof. This result is just a generalization of the parallelogram identity to the case
of working with p vectors instead of 2.

P P P PP
pY MailP =11zl = (-1 llaill® =2) D (wiay) =
i=1 i=1 i=1 i=1 j=i+1

p p 1 p p
o M=l =53 0D e~ il =6,

i=1 j=i+1 i=1 j=1
Clearly then the upper bound follows as,

1< 1<
II—Zwill2=—lewiIIQ—ei/ﬁS(RQ—ei/ﬁ)-
pi:l pi:l

The lower bound similarily follows. O
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If we take z; = fz — f and inner product (g,h) = E (Efil gihi), then ||z;]]*> =
R (f,, f) . To have any meaningful control over R (f, f) = ||%D P, ;||* then the
constants r and R of Lemma 1 should not differ by too much; this says that each fz

should be in a thin annulus or shell centered at the original signal f. As it stands
R? =max R (f,, f) and r? = min R (ﬁ, f), so we ought to be more thoughtful in

choosing the f; when forming the average, f . In particular we seek to minimize R.
Lemma 2 tells how to do this. It says that if the entropies x, (Bc,), €., (Bc,) are
close then the risks R (fl, f) , R (fg, f) have a favorable, common upper bound.

Here closeness will be measured in terms of the entropy gap, 7, of a given library
L, which is defined to be the difference between the entropy of the best (empirical)
basis of that library and the entropy of the ideal basis:

(14) L= (5)\5 (Bc) — Ex, (BL)) -

Recall the notation fBL = fgﬁ (y;&(Bg,)\g)).

Lemma 2. Given two libraries L;, i = 1,2, whose associated entropies satisfy:
(15) Exc, (Be,) = Exs, (Be,)| < i 7z,

then
(16)

R (fo.,0) =B (5., ~ 11P) < 40 Au (o + iy Res (1) . Jor i = 1,2

Proof. Define the library £ = {351 By, Bgz, Bc,}. We will apply Theorem 2 to L;
to this end, we can take £ in that theorem large enough in order to have A = Ar.
Notice that by this choice of parameters the original entropies are unchanged, hence
Ens (Be,) < Ex;(Bg;) i = 1,2. Without loss of generality assume &, (Br,) <
L (l’;’£2). Then it follows from Theorem 2, applied to £, that in order to prove (16)
we only need to prove

(17) E (IIfs,, = fI?) <A© A (02 + R, () -

Construct now a new library £ = {851,352}; we will apply Theorem 2 to this
library and will ghoose § in that theorem such that Az = Ap. It follows from the
hypothesis that B, = B,. Equation (17) then follows from Theorem 2. O

Thus we should single out those libraries £; which pairwise satisfy the hypothesis
of Lemma 2. This gives a good value for R in equation (13) as evidenced by
Proposition 1.

Let |A| denote the cardinality of a set A.

Proposition 1. Let T = {L;li=1,...,|T|}, a collection of libraries, be given. If
the associated entropies satisfy:
(18) |g>\z:i ([;,ﬁz) - E)\Lj ([;,ﬁj)| < ]?:uan T 4,7 =1,... T,
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then
[T

19 E |l 2 fo,) ~ 11

I7I 7]
1 . .
<A A 2+ in Rpg, - E s —fa |I?
< A6 Ar (0 _in @(f)) TP ;:1: ;:1: (Ilfsﬁi Fa )
Proof. We will apply Lemma 1 to the following vectors
i = (f, 5., —f)

and to the inner product (g, h) = E (Zfil gihi) where ¢ and h are random vectors

i.e., functions defined in the probability space implicit in (1) and taking values in
R". Set R in Lemma 1 equal to

R = A(6) \ <a2 + min Rﬁk(f)> .

k=1,...,|T]|
The proof of (19) then follows from a direct application of Lemma 1 to the above
setting and from inequality (20) below. We will prove,

(20)

sl =R (Fa,, 1) < 4@ Ar (224 _min Rey(D)) fori=L... 7]
We now prove (20) by induction on p = |T|. The inductive hypothesis says that
if (20) holds for any set 7,_; C T with |7,_1] = p — 1 then it holds for 7 with
|7| = p. It follows from this inductive hypothesis, given the pairwise inequalities
in (18), that in order to prove (20) we need to prove the statement only for p = 2.
But this statement is simply Lemma 2. O

3.1. Description of Shell Repeling Algorithm. In this section we describe an
algorithm which is based on Proposition 1. We work with a finite collection of many
libraries L = {£;}. We assume that the best ortho-basis algorithm is applicable
to each of the libraries £; € L and they satisfy the general properties listed at
the beginning of Section 3. Let 7; = 7¢, = 7(y, L;,0) be empirical estimates for
e, = (Ex, (Bez,) — €, (Bz,)). We will refer to these last two quantities as the
estimated gaps and the true gaps respectively. The definition and computation of
these quantities are deferred to Appendix A.

Algorithm: Without loss of generality we assume the best ortho bases B, are
indexed accordingly to increasing values of their entropies:

(21) gAL(BLi) SEAL(B&H) fori=1,... L.
From the collection { fgﬁ_ |£; € L} we will select a subset of these estimates which

we will call the repeling shell and denote by S. For simplicity, we will identify f&
with Bz. The construction of S is done recursively as follows: set S* = {f&l }.
Assume now that 8%, i > 1 has been defined and set p = |S|. Define

(22) Re =55 > I -7

fesi fresi
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Inclussion Step: Use fBL to define
i+1
(23) R = = (PRs + Y s, — sl
i+ (p + 1)2 Beiyy Be

BLeSi
Acceptance Step: then if

(24) Eng (Briyy) — Ex, (Be,) < Join 7 for all B, €S
=7,
and
(25) Rit1 > Rsi
we let
i+1 Qi i
(26) S =80 {fg,, )

otherwise ST = S’ and we repeat above steps with fgﬁ )
i+2
The output of this algorithm is the following estimate
S|

~ 1 ~
27 = — E .
( ) fs |S| P fBLl'

The algorithm described above is clearly motivated by Proposition 1 which suggests
to minimize the right hand side of (19). The algorithm does this by adding elements
to the shell, hence making the first term of the right hand side of (19) smaller, if
the “repeling” part becomes larger. We always include in the shell the estimate
with smaller entropy this is to account for the cases in which one of the libraries
is overwhelmingly better than the rest of the libraries to represent the underlying
signal. An example is discussed in Section 4.

4. NUMERICAL EXAMPLES

For our numerical examples we have used a collection of libraries, L, consisting of
41 different wavelet packet libraries £; corresponding to given orthonormal wavelets
including the Daubechies wavelets of orders 2-42 and 68 ([3] pg. 195), the Coiflets
of order 6-30 ([3] pg. 198) and the symlets of order 8-30 ([3] pg. 261). If N in (1)
is a power of 2, then each library has M, = N(log,(N)+1) distinct basis elements.
We have taken N = 2'2. We define the Signal to Noise Ratio (SNR) of the data
(1) to be

> [1£115
N B (o)
In our numerical examples SNR = 6.0. For a given approximation, f , of f we define
the Root Mean Square Error (RMSE) to be

|1f = Fll2
1fll2
The numbers reported are obtained as averages over many random samples of noise.
Similar numerical results are also obtained with different values of SNR and number
of sample points.
Table 1 shows the best RMSE among the 41 best ortho basis estimates. This

estimate, of course, is not available in practice and is of excellent quality. Table 1
also shows the average of the 41 RMSE. The RMSE of the 41 estimates varies
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considerably as can be seen from Table 3. Table 2 shows the RMSE for the shell

TABLE 1. Best RMSE and average RMSE

Signal | Best RMSE | Average of RMSE

| |
[ f5 [ 00325 ] 0.0431 |
| /2 [ 0038 | 0.0514 |
[ /2 ] 00148 ] 0.0209 |
[ /% [ 0.0404 ] 0.0782 |
[/ ] 00452 ] 0.0540 |
[ /5 | 00294 ] 0.0367 |

repeling algorithm using the true gaps and estimated gaps.

TABLE 2. Shell Repeling RMSE with True and Estimated Gaps

Signal | RMSE with True Gaps | RMSE with Estimated Gaps

| |
[ 7] 0.0291 | 0.0293 |
L] 0.0350 | 0.0350 |
L 7] 0.0149 | 0.0144 |
/] 0.0404 | 0.0530 |
L] 0.0392 | 0.0388 |
L] 0.0278 | 0.0286 |

The second column of the Table 3 shows the smallest value of entropy, which
corresponds to the best empirical basis, among the 41 wavelets packets libraries.
The third column shows the RMSE corresponding to that basis. The fourth column
gives the value of entropy for the wavelet packet basis, that belongs to one of the 41
libraries, which gives the smallest RMSE value. This RMSE value is actually shown
in column five. This table illustrates the shortcomings of choosing the estimate
corresponding to the basis with smallest entropy among all the different libraries.

The numerical evidence reported indicates that the estimate of our algorithm,
using either the true gaps or estimated gaps, is competitive with the best RMSE
estimate. The case of f* deserves special discussion. This “block function” is
best reconstructed with the Haar wavelet packet library (included among our 41
libraries). In this case, the shell S, with the true gaps, actually consists of only
one element, which is the estimate corresponding the the Haar library. The reason
being that the true gap for that library turns out to be very small relative to the
remaining set of libraries. On the other hand, our estimates 7, tend to overestimate
the true gaps, this is the reason for the poorer performance of our algorithm in this
case.
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TABLE 3. Empirical Entropies and RMSE for all signals.

| Best Empirical Basis | Best RMSE Basis |

Signals | Entropy (smallest) | RMSE | Entropy | RMSE (smallest) |

| ft | 0.0278 | 0.0997 | 0.0293 | 0.0325 |
| f? | 0.0278 | 0.0868 | 0.0285 | 0.0386 |
| 3 | 0.0274 | 0.0328 | 0.0279 | 0.0148 |
| ft | 0.0278 | 0.0406 | 0.0278 | 0.0404 |
| f° | 0.0283 | 0.0867 | 0.0288 | 0.0452 |
| fe | 0.0278 | 0.0441 | 0.0280 | 0.0294 |

5. DISCUSSION AND EXTENSIONS

Our paper exploits some aspects of Donoho and Johnstone’s framework, namely
the convexity of the L? norm and the oracle inequalities. We present a framework
that justifies the use of averages when many libraries are present and gives indication
under what conditions these averages give better estimates. The observation that
bases with entropy sufficiently close can not be distinguished from the point of
view of oracle inequalities lead us to propose the algorithms in Section 3.1. An
alternative to this approach, which is presently being investigated by the authors,
is to construct the shell S by means of an optimization problem. This approach
allows, in particular, for more than one basis from a given library to appear in
the final average estimate. This type of approach requires a new type of oracle
inequality where the risk functional on the right hand side of equation (12) is
replaced for the ideal risk of an average obtained through the help of an oracle.

APPENDIX A. ENTROPY GAPS FOR LIBRARIES OF WAVELET PACKETS

We remark that in order to compute the quantity £-(B.) we need the values
of the noisy coefficients 6;(y, Bz). That is, knowledge of the underlying function
is needed only to compute Bz. We have found, from extensive numerical experi-
mentations, that the following estimates are useful estimates for the true gaps. As
before, let L be the collection of wavelet packets under consideration. A simple
computation shows that the ideal basis satisfies

N
_ . . 2 2

(28) B = arg%nenﬁlgmm (03(f,B),07) .

Moreover

(29) Ex. (Be) = Zmln 02(y,B£) o )\5)

i=1

The idea is to replace f above by its estimates and then take averages over the
corresponding entropies. Precisely, define

N

! _ AA _ . . 2 "A 2
(30) By =Bc(fp,,) = arg rgnelg;mm (0i (f5,,,B):0 )
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and the corresponding entropy

N
(31) Exe (B) =Y min (62(y, B,), 0% Az )

i=1
Finally

~ 1 o
(32) Exe = 7] > E&lfs,)
el

and
(33) Ai = %ﬁi = 7A-(ya Eia U) = é)\[; - g}\[; (B[,)

Because BIE € L we have 7; > 0.

A.1. Signals Used In Numerical Experiments. Formulas for two of the six
signals are given below. Four of the six functions are borrowed from [6]: f? is
Doppler, f* is Blocks, f° is Bumps and f% is Heavisine. In practice the data in
(1) represents N equally spaced samples of a given function on the closed interval
from 0 to 1. For convenience each set of sample points is normalized so as to have
12 norm equal to one.
f! is the function,
f(t) = t2(1 — t)* cos(200¢?),
and f3 is the function

FU8) = 6 — )2~ 1)
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